Regional Transmission Adequacy Guidelines

RRG Briefing Portland, Oregon

Ravi K. Aggarwal, MBA
Chair, RTAG
Steering Committee & Technical Workgroup
April 29, 2005

Process Clarification

- Objective: Balance reliability, economic, environmental and other public purpose objectives to optimize transmission and resources to meet the needs of the region.
- Expected result: One or more documents to supplement existing WECC, NERC, and utility reliability criteria
- Proposed Timeline:
 - First set of guidelines (highest priority issues): Sept. 30, 2005
 - Regional review and approval: Dec. 31, 2005

Objective

- How does the region address transmission adequacy challenges that current reliability criteria don't address?
 - How do the existing NERC/WECC standards for the bulk system apply to local load areas
- What guidelines are needed to address challenges that we have planning economic upgrades?
 - Current NERC/WECC address physical adequacy and not economic adequacy

Prioritization of Issues

First Step: Benchmarking → Helps establish the baseline for understanding current application of N-1 and N-2 criteria

- Load service issue (e.g., Olympic Peninsula Energy Efficiency/DSM)
 - N-2 requirements (should it be based on MW or geographic scope)
- Robustness of the system: N-1-1?
- Metrics to measure performance
- Linkage between Resource and Transmission Adequacy

N-2 Issue (load service)

- Local Area Network
- Loads and Transfers
- N-2 benchmarking discussed for following areas:
 - BPA Load areas (Olympic Peninsula, and So. Oregon Coast)
 - PAC So. Oregon
 - Snohomish System

Proposed Methodology

- Consequence
 - Peak load
 - Fraction of load that can be served under N-2
- Exposure
 - Likelihood of outage(s)
 - Load-duration curve
- Benefit/Cost analysis
 - Cost to fix
 - Societal cost of outages

N-1-1

- One element taken out of service intentionally and a contingency unintentionally trips another element
- Power system generally not planned to operate for all N-1-1 conditions (Number of combinations are tool large to plan and cost of the infrastructure needed will be too high)
- Operations cannot address all N-1-1 conditions with the available "tool box" (Safety Net?)

Examples

- Puget Sound PSANI
- Eugene Area
- Redmond Area
- Suggested Solutions
 - Undervoltage load shedding
 - Coordinated Planned Outage (timeframe)

Transmission Adequacy Issues

- Reliability Versus Economic Adequacy: Policy issues
 - Keep the lights with reasonable assuredness
 - Provide comparable access to supply markets,
 - Provide economic access to economic markets for lowest cost
- Generation costs versus grid transfer path costs
- Generation costs include?
 - Cost of unmet load
 - Out of merit generation production costs as limited by path ratings and scheduling limits
 - Expected curtailment re-dispatch following transmission outages
 - Generation cost/price volatility: illiquidity created by transmission constraints
- What is the "prudent utility practice" and acceptable amount of generation costs at point 1
 - How is acceptable amount established
 - To whom and how are costs allocated now tariff provisions
 - Generation and transmission
 - What is meant by firm?
- If grid is expanded to point 2 to bring reliability back from pt 0
 - "Lumpyness" of transmission capacity additions and environmental, ROW concerns
 - How much to add (why stop at point 2?)
 - Allocation of costs and capacity added: present tariff treatment
 - Who pays for extra
- For pt 3, how is path capacity allocated to make sure of best use
 - Who pays for added capacity
 - Who receives generation cost reductions
- Pt 4: Decoupling transmission and generation, totally comparable service
 - Society can't afford to add enough transmission to decouple generation from transmission costs totally,
 - or provide exactly comparable service.
 - How to provide fair allocation of costs and benefits

Contact Information

Ravi K. Aggarwal

Chair – Steering Committee & Technical Workgroup

Bonneville Power Administration

Phone: (360) 619-6681 Fax: (360) 619-6945

Email: rkaggarwal@bpa.gov

OR

Jerry Rust Northwest Power Pool

Phone: (503) 464-2806

Email: jerry.rust@nwpp.org

Backup Slides

Source: Bill Mittelstadt (BPA)

Potential Elements of a Transmission Adequacy Guidelines

Reliability Standards

- NERC, WECC and BPA standards
- Explicit performance criteria such as LOLP
- Probabilistic criteria
- Robustness tests
- Extreme event tests

Economic Indicators

- Societal benefit/cost analysis of reliability – Value of load loss
- Acceptable levels of congestion
- Definition of least cost solutions
- Price volatility and tolerance
- Assurance level for maintaining ATC across flowgates

Potential Elements of a Transmission Adequacy Guidelines

Expansion & Pricing Policy

- Drivers
 - Generation
 - Load
 - Transfers into, out of and through the region
 - Flexibility
- Financial
 - pricing expansion
 - Advance financing requirements or other risk management tools

Other Objectives

- Development of renewable
- Resource diversity
- Economic development
- Seasonal products

Possible Solutions

- Amounts and obligations for RAS (or special protection scheme)
- Re-dispatch (mechanisms)
- Curtailment strategies
- Non-Wires Solutions
- Changes to maintenance practices to provide for more flexibility
- Better load forecast mechanisms
- Investigate and incorporate new technologies
- Locational Marginal Pricing (LMP) Requires formation of an Independent Transmission Operator
- Computer tools to assess state of the transmission system in real-time

Linkage of Resource and Transmission Adequacy

Adequacy = Physical (lights stay on) and Economic (acceptable risk that prices reasonable & not volatile) or just Physical?

Power System Adequacy

Power System Reliability;
Operational Adequacy

Transmission Adequacy

Well-Functioning Electricity Markets

Within Year

Reducing Risks

Unprotected **Conditions System Dispatch Control Capabilities** Center **Capabilities** Safe Area (Overlap)

Contingency Set

Increasing

System Stress

